
Before the First Block: A Historical Overview of
Distributed Consensus and Cryptography

Stephen Corya
Corya Enterprises, LLC

Indianapolis, Indiana
stephen@corya.co

"Who knows what will be the future incarnations of money? Computer bytes?"
—Milton Friedman, Money Mischief: Episodes in Monetary History, 1992

Abstract—Describing a blockchain as "a
chain of blocks" does little to enhance the layman's
understanding. While the first bitcoins were created
in 2009, there is a great deal of preceding work
which contributed to this development. This article
presents a brief history of distributed consensus
and cryptography with the hope that the reader may
better understand blockchain technology and its
significance.

Index Terms—Blockchain, cryptographic
protocols, distributed databases, proof of stake,
proof of work

I. DISTRIBUTED SYSTEMS

A blockchain is a type of distributed computer
system. Advantages of distributed systems (compared
to single, separate computers) include reliability,
flexibility, and geographical distribution [1]—all essential
components of a highly available, global system such as
a blockchain. For the sake of this article, a distributed
system will be defined as a collection of computer
processes connected by a communications network. A
shared state among the processes distinguishes such a
collection as a system, beyond its constituent
components. Data are among the components of this
shared state.

A. Consensus and Replication

Distributed consensus is the agreement upon a
proposed datum to be added to shared state by a
distributed system. Properties of consensus in the
context of computer systems include safety (every
process agrees on the proposed datum), liveliness (the
processes come to an agreement), and fault-tolerance

(the system as a whole can continue its operation in
spite of potential, individual process failure) [2].

Shared data must be replicated to provide
high availability. Storing data on a single computer
creates a single point of failure; if that computer goes
offline, the entire networked system effectively
collapses. Automatically reaching consensus can be
achieved through algorithms, which may be
formalized as protocols.

B. Synchrony

Distributed systems can broadly be
categorized as either synchronous or asynchronous.
In a synchronous system, the constituent processes
agree on some timing constraint. In practice, over a
wide-area network such as the Internet, two
networked processes operating on different hardware
in separate geographic regions can only agree upon
timing to a degree. Dwork, Lynch, and Stockmeyer
define synchrony within such a degree as "partially
synchronous" in 1988 [3]. Many distributed consensus
algorithms rely on partial synchrony.

II. PAXOS

Paxos is among the most thoroughly
researched consensus algorithms [4]. While some
regard the Paxos algorithm as difficult to understand
[5], its original presentation as a metaphor in 1998 [6]
may be helpful to the non-geek. The Paxos algorithm
is named after the Greek Island of Paxos and
explained through a fictional parliamentary system
therein.

A. Constraints

© 2025 Stephen Corya 1

The parliament requires a consistency of its
record (passed legislation) in spite of its members’
“frequent forays from the chamber and the forgetfulness
of their messengers.” Messengers are liable to submit
their messages more than once or not send their
messages at all, and legislators can only communicate
by messenger.

In addition to strict consistency of their
legislative record, the Paxons require that a decree be
passed if there is a quorum of legislators within the
Chamber for a "sufficiently long period of time"; they
may not simply agree to leave the record blank. The
requisite period of time in the Chamber is measured by
each legislator’s hourglass.

B. The Protocol

To add a decree to the record, each legislator
maintains a ledger, wherein he records a numbered
sequence of passed decrees. Decrees cannot be
changed once recorded. From an example in [6], a
legislator has the entry "155: The olive tax is 3
drachmas per ton" on her ledger. No other legislator
may have a different decree in his ledger at sequence
number 155; although, another legislator could have no
entry at sequence 155 if he has not yet received his
message. Legislators additionally maintain notes on the
back of their ledgers. These notes can be crossed out.

Each proposed decree is accompanied by a
ballot issued by an elected president. With a quorum
present in the Chamber for a certain time, exactly one
legislator will be elected president. Any member of
parliament within the Chamber may propose a ballot to
the president. All legislators within the Chamber vote in
the affirmative to all proposals. These ballots are
numbered, and the president chooses a number greater
than the last recorded decree.

C. Applicability

In the analogy, departures from the
parliamentary Chamber represent the failure of
processes within a distributed system. The messengers
represent a communications network among the
processes. The hourglasses represent a requirement for
(at least partial) synchrony. One may note that these
messengers “could be counted on not to garble
messages”, and all the legislators are always adherent
to the parliamentary protocols so long as they are in the
Chamber.

III. THE BYZANTINE GENERALS PROBLEM

Fischer [7] characterizes two types of process
failures: crashes and Byzantine failure. If a process
crashes, it ceases to communicate with other
processes in the system. In the case of a Byzantine
failure, which takes its name from the Byzantine
Generals Problem [8], a process sends deviant
information to the other processes. The problem can
be represented in terms of "loyal generals" and
"traitors". The loyalists must agree on a plan, and this
plan must have sufficient support among a number of
loyalists to succeed, regardless of the traitors.
Characterizing Byzantine failure with Paxos
terminology: a messenger is sending "[garbled]
messages", a legislator is acting in violation the
protocol, or both.

Dolev expands upon the Byzantine Generals
Problem in [9]. He concludes that consensus is
possible, even in the case of Byzantine failure, so
long as less than one third of the processes in the
system are faulty at and least half of the processes
may reach one another.

A. (Practical) Byzantine Fault Tolerance

Castro and Liskov present a solution to the
Byzantine Generals Problem in 1999 [10]. Their
solution (Practical Byzantine Fault Tolerance or
“PBFT”) is notable for several reasons. Among these:
it does not require network synchrony, and it ensures
both safety and liveliness, so long as there is a
sufficient number of reliable processes (one third, as
shown by Dolev) within the system. The practicality of
PBFT is in part a consequence of its significant
reduction in the number of messages that must be
exchanged by distributed processes in comparison to
earlier solutions.

IV. MUTUAL SUSPICION AND SECURITY

The Byzantine Generals Problem
necessitates suspicion among the distributed
processes. In [11], Chaum details algorithms which
can be used to establish trust in a computer system
by parties that may or may not trust one another. He
provides an example of a computer system that tracks
a bank's checking account balances. A group
maintaining this system or a similar system is referred
to as a group of "trustees." Data are stored in "vaults"
such that other parties can access and verify them.

© 2025 Stephen Corya 2

Chaum's solution leverages public key cryptography to
establish trust among the trustees and encrypt
communications.

A. Public Key Cryptography

Public key cryptography as employed by
Chaum's algorithms is introduced, as a theory, by J. H.
Ellis in 1970 [12]. In 1973, Clifford Cocks [13] provides a
possible solution to Ellis' theory. These men worked at
the Government Communications Headquarters of the
United Kingdom, and their work was classified until
1997 [14]. Essential to public key cryptography is public
key exchange, whereby two parties agree upon which
encryption ciphers they will use without previously
communicating in confidence.

Due to the secrecy of Ellis' and Cocks' work,
credit for the invention of public key exchange is often
given to Diffie and Hellman. In 1976, they publish [15];
however, in 1974, Ralph Merkle (a University of
California, Berkeley, undergraduate student at the time)
presents [16] to Professor Lance Hoffman, a project
proposal for his CS244 class. Like Ellis, Merkle
contends that public key exchange is possible, and
suggests that it would make a suitable undergraduate
project. Hoffman rejects the proposal, and Merkle drops
the class [17]. In [18], Hellman suggests that what is
commonly called "Diffie-Hellman" exchange be called
“Diffie-Hellman-Merkle Key Exchange."

Paramount to all cryptography is the knowledge
of keys. Prior to Diffie-Hellman, these keys needed to
be shared securely via a separate communication
channel. That is, in order for two or more parties to
privately communicate over a public network such as
the Internet, they had to exchange keys ahead of time
over a private network.

Merkle provides an eloquent explanation in [19].
He describes three parties X, Y, and Z. X and Y wish to
communicate securely without Z being able to decipher
their messages.

"X and Y must both know what the key is, and
must insure that Z does not know what it is. In the
traditional paradigm for cryptography, this situation
comes about by the transmission of the key from X to Y
over some special and secure communications channel,
which we shall refer to as the key channel. Z cannot
intercept messages sent on this channel, and the key is
therefore safe.

"The reason that the key channel is not used
for normal communications is because of its expense
and inconvenience. Radio and telephone cannot be
used, as both are vulnerable to passive
eavesdropping. Registered mail might be acceptable
for moderate security. Word of mouth is better, but
listening devices might compromise it. Perhaps the
only safe method is to send a trusted courier, with an
attaché case chained to his wrist. This requires that
you trust the courier. Whatever the method used, if Z
should manage to discover the key by 'practical
cryptanalysis,' then X and Y might very well continue
in blissful ignorance of the fact."

A practical analogy of public key cryptography
can be expressed in terms of a P. O. box. A public key
is analogous to the P. O. box's address. Anyone can
send a letter to the box; however, a private key (the
key that unlocks the box) is required to read the
letters. The analogy can be stretched to explain
another important aspect of public key cryptography:
signed messages. Assuming that any party that can
send a letter has a unique signature, a letter's origin
can be verified upon its reception based on its
signature. A letter cannot be practically unsigned;
signing a letter is a one-way function. The analogy is
stretched, because in public key cryptography, signing
is done with private keys. The creation and application
of a unique, wax seal with the imprint of the P. O.
box’s key may create a more accurate illustration.

V. HASHING

Hash algorithms (or hash functions) are
another type of one-way functions, with applications in
both distributed consensus and cryptography.
Applying a hash algorithm is commonly referred to as
"hashing". One of the first hash algorithms MD2
(Message-Digest) is put forth by Kaliski in 1992 [19].
Hash algorithms produce a fixed-length digest (a
"hash") of a given input. For example, the MD2 hash
of the text "for example" is

5b14d4e48ab3f0a803daff2ff53d36ba.

It is not feasible to derive input text from its hash.
Other notable hash algorithms include SHA-1 (Secure
Hash Algorithm 1), published by the National Institute
of Standards and Technology in 1993 [20], and SHA-
2, published in 2002 [21]. Correia et al. [22] puts
forward an approach to Byzantine-tolerant distributed

© 2025 Stephen Corya 3

consensus that utilizes hash algorithms as part of its
methodology.

VI. BLOCKCHAINS

Correia [23] describes a blockchain as "an
exciting new technology" which "is essentially a secure,
unmodifiable, append-only, log of transactions." This log
of transactions can be summarized as a ledger. Such a
ledger is often used to maintain a record of monetary
units possessed by a number of actors. These monetary
units are often called "cryptocurrency" or "coins." One
may note that while cryptocurrency and blockchains are
related, the nature of the relationship is such that
blockchain technology enables cryptocurrency.
Constituent, distributed processes are often termed
"nodes" in the context of blockchain systems.

A. Bedrock

Bedrock [24] is a distributed database
consensus software, started in 2007; its initial
deployment may be considered the start of the first
blockchain. Like many other consensus protocols,
Bedrock is designed to work over a wide-area network
such as the Internet. Unlike many other blockchain
protocols, Bedrock is not designed to reach consensus
among hundreds or thousands of nodes. Its authors
describe Bedrock as a "'private' blockchain" operating
among a "small cluster of servers" [25]. These
properties make Bedrock a fine ,explanatory blockchain.

"Under the hood", Bedrock maintains
transactions within a table, separately on every node.
The transactions have three properties. The first
property is an ID—a simple, unique numeral assignment
for each transaction. The second property is a query,
which can be considered a modification instruction for
the system's data. The table's third property is a SHA-1
hash of both the current query and the previous query's
hash. By hashing both the current query and the
previous query’s hash together into a single, new hash
that gets added to the table, each transaction's hash
property is a product of both itself and its predecessor;
the transactions are "chained" together.

When a node connects to the system, it
broadcasts the ID and SHA-1 hash of the latest
transaction in its table. If another node has this same
transaction in their own table, these nodes are in
consensus up to this transaction ("block") in the chain.
Because transaction ID's are incremental, one node's

latest transaction ID may be lower than another's. In
this case, transactions can be synchronized and their
queries committed to the local state of each node.

In some cases, different nodes may disagree
on which transaction corresponds a given ID. These
incongruous nodes may be described as "forked." In
this state, the nodes will refuse each other's
attempted communications. Multiple nodes can exist
on each fork. A Paxos-based election protocol will
ensure that only one of these forks will elect a new
leader, based on which fork has a quorum. As with
proposals in Paxos, all transactions are sent to the
leader.

B. Proof of Work

All algorithms and protocols reviewed
heretofore have no cost associated with proposing or
committing transactions. In Paxos terms, there is no
fee associated with adding to a ledger or passing
legislation. This is the case with innumerable,
additional protocols. In 1992, Dwork and Naor [26] put
forth a possible technique to create a computational
cost to modifying the state of a computer system.
Their work is inspired by a glut of junk email, and this
remains a theme throughout the paper; however, their
technique can be extended as an "access control
mechanism that can be used whenever it is desirable
to restrain, but not prohibit, access to a resource."

Dwork and Naor propose a "pricing function"
to control the cost of various digital activities, such as
sending emails. In their model, the recipient of the
email could easily discern whether or not the pricing
function had been executed. Multiple possible
functions are explored, and the authors enumerate
three categories of these functions: easy, moderate,
and hard. They conclude that a moderately difficult
pricing function would be ideal, but at the time, there
was "no theory of moderately hard functions."

C. Cryptocurrency

Transitioning from email to money, Wei Dai
publishes b-money in 1998 [27]. He proposes that
money can be created in a distributed system "by
broadcasting the solution to a previously unsolved
computational problem." His approach rewards the
money creator based on the difficulty of the
computational problem, depending on hypothetical
market conditions.

© 2025 Stephen Corya 4

Satoshi Nakamoto (possibly a pseudonym [28])
creates the first practical cryptocurrency in 2008 with
the publication of [29], and he calls this new currency
“bitcoin”. This publication is widely regarded as the
creation of the term "blockchain", wherein Nakamoto
states plainly, "blocks are chained". The first bitcoin
block, known as the "genesis block", is created in 2009.

Cryptocurrencies are fundamentally dependent
on consensus; every node must agree on which actors
control how many units of currency. In his novel
blockchain protocol, Nakamoto addresses the issue of
“moderately hard functions” by varying the difficulty of
finding a correct hash for a block of transactions. The
variability is dynamic. As more computational resources
are allocated to the creation of new blocks—and new
bitcoins, the difficulty increases. Where Bedrock uses
an election to determine which forked nodes have a
quorum, bitcoin takes another approach: the longest
chain is assumed to be correct.

Since bitcoin is designed to be implemented on
mutually suspicious nodes, additional differentiation
from Bedrock is required. When a user submits a bitcoin
transaction, a hash is calculated from both the hash of
the previous transaction and the public key of the
recipient. The user submitting the transaction signs this
hash with a private key. Using this signature, the
recipient is able to verify the transaction; however, this
does not in and of itself stop the submitter from sending
the same coins to multiple recipients. This problem is
referred to as "double spending."

The double spending problem is addressed by
putting a timestamp on each block, where a block is a
collection of transactions. Bitcoin uses a distributed
timestamp server. The timestamp server calculates the
hash of a block, and then broadcasts that hash to other
nodes. A block's hash also includes its predecessor's
hash, thus the blocks are chained together. Because the
timestamp server nodes are mutually suspicious, bitcoin
employs a proof of work mechanism. Each block of
transactions contains an incremental number called a
"nonce". A network of actors competes to complete the
proof of work required to find a hash for a new block
that satisfies the conditions set by the dynamic difficulty.
This competition is often referred to as "mining". Miners
are rewarded for their computational effort with special
transactions, the creation of new bitcoins.

An overview of the bitcoin network’s
functionality, directly from [29]:

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on finding a difficult proof of work
for its block.

4. When a node finds a proof-of-work, it broadcasts
the block to all nodes.

5. Nodes accept the block only if all transactions in it
are valid and not already spent.

6. Nodes express their acceptance of the block by
working on creating the next block in the chain, using
the hash of the accepted block as the previous hash.

One may note the assumption that every
node in the network will participate in the proof of
work competition. In light of the extraordinary amount
of computing power dedicated to mining [30], many
nodes elect not to participate at all. These non-mining
nodes still keep a record of the blockchain, but they
do not propose new blocks. Both mining and non-
mining nodes are free to join or leave the network at
any time; they synchronize with the longest chain
accordingly.

D. Proof of Stake

Proof of stake is a consensus protocol that
builds upon the foundation laid by proof of work,
likewise applicable to cryptocurrency. This novel
protocol is formally introduced in 2012 by Sunny King
and Scott Nadal [31]. (At some point, the name of
their original proof of stake cryptocurrency "PPCoin"
was superseded by "Peercoin".) The authors
recognize the inherent resource consumption required
by an effective proof of work system, and
subsequently put forth a concept they call "coin age".
To illustrate through example, "if Bob received 10
coins from Alice and held it for 90 days, we say that
Bob has accumulated 900 coin-days of coin age." To
accurately calculate coin age, naturally each
individual transaction requires a timestamp.

As with bitcoin, the acceptance of a new block
by other nodes rewards its proposer with newly
created coins. In order to earn the privilege of
proposing a new block, a Peercoin holder sends coins
to himself; in the process, he consumes some portion

© 2025 Stephen Corya 5

of his own coin age. The new block must meet a hash
requirement, as is the case is proof of work; however,
this requirement is significantly easier to compute than
the same in a proof of work system. This reduced hash
difficulty contributes to proof of stake's diminished
resource requirements. Even though the hash difficulty
is relatively low, its computation can be regarded as
moderately difficult, and it fluctuates to accommodate
more or less mining effort, as with proof of work.
Resolution of fork conditions differs from bitcoin's proof
of work. Instead of assuming the longer chain is correct,
Peercoin assumes that the correct fork is the one with
the greater consumed coin age.

Proof of work and proof of stake are the two
most prominent consensus protocols for blockchain
systems, powering bitcoin and Ethereum respectively.
(The Ethereum blockchain was switched from proof of
work to proof of stake on September 15, 2022 with an
update commonly called "The Merge"; the update
reduces energy consumption by ~99.95% [32].) These
protocols represent milestones in the long, intertwined
roads of distributed consensus and cryptography.

VII. FIN.

A blockchain is a chain of blocks.

© 2025 Stephen Corya 6

References

[1] “Advantages and disadvantages of Distributed Systems,” GeeksforGeeks,
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-distributed-systems/ (accessed Mar. 30,
2025).

[2] A. Dinh, “History of the Impossibles - CAP and FLP,” https://dinhtta.github.io/flpcap/ (accessed Apr. 17,
2025).

[3] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial synchrony,” Journal of
the ACM, vol. 35, no. 2, pp. 288–323, Apr. 1988. doi:10.1145/42282.42283

[4] C. Cachin, "Yet another visit to paxos," IEEE Transactions on Dependable and Secure Computing, vol.
12, no. 6, pp. 624-637, Nov.-Dec. 2015. Available: https://www.semanticscholar.org/paper/Yet-Another-Visit-to-
Paxos-Cachin/84edec63e08ba4e5a6ad9029d86f93b420e79392. (accessed Apr. 17, 2025)

[5] Lamport, L. "Paxos made simple." Microsoft Research, 2001.
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/. (accessed Apr. 12, 2025).

[6] Lamport, L., "The part-time parliament," ACM Transactions on Computer Systems (TOCS), vol. 16, no.
2, pp. 133-169, May 1998.

[7] M. J. Fischer, “The consensus problem in Unreliable Distributed Systems (a brief survey),” Lecture Notes
in Computer Science, pp. 127–140, 1983. doi:10.1007/3-540-12689-9_99

[8] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM Transactions on
Programming Languages and Systems, vol. 4, no. 3, pp. 382–401, Jul. 1982. doi:10.1145/357172.357176

[9] D. Dolev, “The Byzantine Generals Strike again,” Journal of Algorithms, vol. 3, no. 1, pp. 14–30, Mar.
1982. doi:10.1016/0196-6774(82)90004-9

[10] Castro, M., & Liskov, B. (1999). Practical Byzantine Fault Tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and Implementation (pp. 173-186). New Orleans, USA.

[11] Chaum, D. L. (1982). Computer Systems Established, Maintained, and Trusted by Mutually Suspicious
Groups. University of California, Berkeley.

[12] J. H. Ellis, “The Possibility of Secure Non-secret Digital Encryption,” Government Communications
Headquarters, Jan. 1970. Accessed: Apr. 08, 2025. [Online]. Available: https://cryptocellar.org/cesg/possnse.pdf

[13] C. C. Cocks, “A Note on ‘Non-secret Encryption,’” Government Communications Headquarters, Nov.
1973. Accessed: Apr. 08, 2025. [Online]. Available: https://cryptocellar.org/cesg/notense.pdf

[14] N. Smart, “Dr Clifford Cocks CB,” Honorary Graduates,
https://www.bristol.ac.uk/alumni/our-alumni/honorary-degrees/honorary-graduates/2008/cocks.html (accessed
Apr. 12, 2025).

[15] W. Diffie and M. Hellman, “New Directions in Cryptography,” IEEE Transactions on Information Theory,
vol. 22, no. 6, pp. 644–654, Nov. 1976. doi:10.1109/tit.1976.1055638

[16] R. Merkle, “Project Proposal.” Ralph C. Merkle
https://www.ralphmerkle.com/1974/FirstCS244projectProposal.pdf

[17] History of public key cryptography, https://www.ralphmerkle.com/1974/ (accessed Apr. 13, 2025).

[18] M. E. Hellman, “Cybersecurity, nuclear security, Alan Turing, and illogical logic,” ACM Turing award
lectures, p. 2015, Oct. 2016. doi:10.1145/1283920.2976757

© 2025 Stephen Corya 7

https://cryptocellar.org/cesg/possnse.pdf
https://www.ralphmerkle.com/1974/FirstCS244projectProposal.pdf
https://cryptocellar.org/cesg/notense.pdf

[19] B. S. Kaliski, “The MD2 Message-Digest Algorithm.” RSA Laboratories, Redwood City, CA, Apr. 1992
https://www.rfc-editor.org/rfc/pdfrfc/rfc1319.txt.pdf

[20] “FIPS Publication 180.” National Institute of Standards and Technology, Gaithersburg, MD, May. 11,
1993

[21] “FIPS Publication 180-2.” National Institute of Standards and Technology, Gaithersburg, MD, Aug. 1,
2002

[22] M. Correia, N. F. Neves, L. Lung, and P. Veríssimo, "Byzantine-Resistance Consensus based on a Novel
Approach to Intrusion Tolerance," Repositório da Universidade de Lisboa, 2004. Available:
http://hdl.handle.net/10451/15076 (accessed Apr. 14, 2025).

[23] M. Correia, “From Byzantine Consensus to Blockchain Consensus,” in Essentials of Blockchain
Technology, Boca Raton, Florida: CRC Press, 2019

[24] “Bedrock – rock-solid distributed data,” Bedrock by Expensify, https://bedrockdb.com/ (accessed Apr. 14,
2025).

[25] “Blockchain – Bedrock’s secret sauce (before it was cool),” Bedrock by Expensify,
https://bedrockdb.com/blockchain.html (accessed Apr. 14, 2025).

[26] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” Lecture Notes in Computer
Science, pp. 139–147, 1992. doi:10.1007/3-540-48071-4_10

[27] W. Dei, “b-money.” 1998 http://www.weidai.com/bmoney.txt

[28] S. Haig, “John McAfee is 99% certain he knows who satoshi nakamoto is,” Cointelegraph,
https://cointelegraph.com/news/john-mcafee-knows-who-satoshi-nakamoto-is (accessed Apr. 15, 2025).

[29] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.” Bitcoin Project, Oct. 2008
https://bitcoin.org/bitcoin.pdf

[30] M. Morey, G. McGrath, and H. Minato, “Tracking electricity consumption from U.S. cryptocurrency mining
operations,” Today in Energy, https://www.eia.gov/todayinenergy/detail.php?id=61364 (accessed Apr. 18, 2025).

[31] S. King and S. Nadal, “PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake.” Peercoin
Foundation, Amsterdam, Noord Holland, 2012 https://www.peercoin.net/papers/peercoin-paper.pdf

[32] “The merge,” Ethereum.org, https://ethereum.org/en/roadmap/merge/ (accessed Apr. 18, 2025).

© 2025 Stephen Corya 8

https://www.peercoin.net/papers/peercoin-paper.pdf
http://www.weidai.com/bmoney.txt
http://hdl.handle.net/10451/15076
https://www.rfc-editor.org/rfc/pdfrfc/rfc1319.txt.pdf

