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"Who knows what will be the future incarnations of money? Computer bytes?"
—Milton Friedman, Money Mischief: Episodes in Monetary History, 1992

Abstract—Describing a blockchain as "a 
chain of blocks" does little to enhance the layman's 
understanding. While the first bitcoins were created 
in 2009, there is a great deal of preceding work 
which contributed to this development. This article 
presents a brief history of distributed consensus 
and cryptography with the hope that the reader may 
better understand blockchain technology and its 
significance. 

Index Terms—Blockchain, cryptographic 
protocols, distributed databases, proof of stake, 
proof of work

I. DISTRIBUTED SYSTEMS

A blockchain is a type of distributed computer 
system. Advantages of distributed systems (compared 
to single, separate computers) include reliability, 
flexibility, and geographical distribution [1]—all essential 
components of a highly available, global system such as 
a blockchain. For the sake of this article, a distributed 
system will be defined as a collection of computer 
processes connected by a communications network. A 
shared state among the processes distinguishes such a 
collection as a system, beyond its constituent 
components. Data are among the components of this 
shared state.

A. Consensus and Replication

Distributed consensus is the agreement upon a 
proposed datum to be added to shared state by a 
distributed system. Properties of consensus in the 
context of computer systems include safety (every 
process agrees on the proposed datum), liveliness (the 
processes come to an agreement), and fault-tolerance 

(the system as a whole can continue its operation in 
spite of potential, individual process failure) [2].

Shared data must be replicated to provide 
high availability. Storing data on a single computer 
creates a single point of failure; if that computer goes 
offline, the entire networked system effectively 
collapses. Automatically reaching consensus can be 
achieved through algorithms, which may be 
formalized as protocols.

B. Synchrony

Distributed systems can broadly be 
categorized as either synchronous or asynchronous. 
In a synchronous system, the constituent processes 
agree on some timing constraint. In practice, over a 
wide-area network such as the Internet, two 
networked processes operating on different hardware 
in separate geographic regions can only agree upon 
timing to a degree. Dwork, Lynch, and Stockmeyer 
define synchrony within such a degree as "partially 
synchronous" in 1988 [3]. Many distributed consensus 
algorithms rely on partial synchrony.

II. PAXOS

Paxos is among the most thoroughly 
researched consensus algorithms [4]. While some 
regard the Paxos algorithm as difficult to understand 
[5], its original presentation as a metaphor in 1998 [6] 
may be helpful to the non-geek. The Paxos algorithm 
is named after the Greek Island of Paxos and 
explained through a fictional parliamentary system 
therein.

A. Constraints

© 2025 Stephen Corya 1



The parliament requires a consistency of its 
record (passed legislation) in spite of its members’ 
“frequent forays from the chamber and the forgetfulness 
of their messengers.” Messengers are liable to submit 
their messages more than once or not send their 
messages at all, and legislators can only communicate 
by messenger.

In addition to strict consistency of their 
legislative record, the Paxons require that a decree be 
passed if there is a quorum of legislators within the 
Chamber for a "sufficiently long period of time"; they 
may not simply agree to leave the record blank. The 
requisite period of time in the Chamber is measured by 
each legislator’s hourglass.

B. The Protocol

To add a decree to the record, each legislator 
maintains a ledger, wherein he records a numbered 
sequence of passed decrees. Decrees cannot be 
changed once recorded. From an example in [6], a 
legislator has the entry "155: The olive tax is 3 
drachmas per ton" on her ledger. No other legislator 
may have a different decree in his ledger at sequence 
number 155; although, another legislator could have no 
entry at sequence 155 if he has not yet received his 
message. Legislators additionally maintain notes on the 
back of their ledgers. These notes can be crossed out.

Each proposed decree is accompanied by a 
ballot issued by an elected president. With a quorum 
present in the Chamber for a certain time, exactly one 
legislator will be elected president. Any member of 
parliament within the Chamber may propose a ballot to 
the president. All legislators within the Chamber vote in 
the affirmative to all proposals. These ballots are 
numbered, and the president chooses a number greater 
than the last recorded decree.

C. Applicability

In the analogy, departures from the 
parliamentary Chamber represent the failure of 
processes within a distributed system. The messengers 
represent a communications network among the 
processes. The hourglasses represent a requirement for 
(at least partial) synchrony. One may note that these 
messengers “could be counted on not to garble 
messages”, and all the legislators are always adherent 
to the parliamentary protocols so long as they are in the 
Chamber.

III. THE BYZANTINE GENERALS PROBLEM

Fischer [7] characterizes two types of process 
failures: crashes and Byzantine failure. If a process 
crashes, it ceases to communicate with other 
processes in the system. In the case of a Byzantine 
failure, which takes its name from the Byzantine 
Generals Problem [8], a process sends deviant 
information to the other processes. The problem can 
be represented in terms of "loyal generals" and 
"traitors". The loyalists must agree on a plan, and this 
plan must have sufficient support among a number of 
loyalists to succeed, regardless of the traitors. 
Characterizing Byzantine failure with Paxos 
terminology: a messenger is sending "[garbled] 
messages", a legislator is acting in violation the 
protocol, or both.

Dolev expands upon the Byzantine Generals 
Problem in [9]. He concludes that consensus is 
possible, even in the case of Byzantine failure, so 
long as less than one third of the processes in the 
system are faulty at and least half of the processes 
may reach one another.

A. (Practical) Byzantine Fault Tolerance

Castro and Liskov present a solution to the 
Byzantine Generals Problem in 1999 [10]. Their 
solution (Practical Byzantine Fault Tolerance or 
“PBFT”) is notable for several reasons. Among these: 
it does not require network synchrony, and it ensures 
both safety and liveliness, so long as there is a 
sufficient number of reliable processes (one third, as 
shown by Dolev) within the system. The practicality of 
PBFT is in part a consequence of its significant 
reduction in the number of messages that must be 
exchanged by distributed processes in comparison to 
earlier solutions.

IV. MUTUAL SUSPICION AND SECURITY

The Byzantine Generals Problem 
necessitates suspicion among the distributed 
processes. In [11], Chaum details algorithms which 
can be used to establish trust in a computer system 
by parties that may or may not trust one another. He 
provides an example of a computer system that tracks 
a bank's checking account balances. A group 
maintaining this system or a similar system is referred 
to as a group of "trustees." Data are stored in "vaults" 
such that other parties can access and verify them. 
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Chaum's solution leverages public key cryptography to 
establish trust among the trustees and encrypt 
communications.

A. Public Key Cryptography

Public key cryptography as employed by 
Chaum's algorithms is introduced, as a theory, by J. H. 
Ellis in 1970 [12]. In 1973, Clifford Cocks [13] provides a 
possible solution to Ellis' theory. These men worked at 
the Government Communications Headquarters of the 
United Kingdom, and their work was classified until 
1997 [14]. Essential to public key cryptography is public 
key exchange, whereby two parties agree upon which 
encryption ciphers they will use without previously 
communicating in confidence.

Due to the secrecy of Ellis' and Cocks' work, 
credit for the invention of public key exchange is often 
given to Diffie and Hellman. In 1976, they publish [15]; 
however, in 1974, Ralph Merkle (a University of 
California, Berkeley, undergraduate student at the time) 
presents [16] to Professor Lance Hoffman, a project 
proposal for his CS244 class. Like Ellis, Merkle 
contends that public key exchange is possible, and 
suggests that it would make a suitable undergraduate 
project. Hoffman rejects the proposal, and Merkle drops 
the class [17]. In [18], Hellman suggests that what is 
commonly called "Diffie-Hellman" exchange be called 
“Diffie-Hellman-Merkle Key Exchange."

Paramount to all cryptography is the knowledge 
of keys. Prior to Diffie-Hellman, these keys needed to 
be shared securely via a separate communication 
channel. That is, in order for two or more parties to 
privately communicate over a public network such as 
the Internet, they had to exchange keys ahead of time 
over a private network.

Merkle provides an eloquent explanation in [19]. 
He describes three parties X, Y, and Z. X and Y wish to 
communicate securely without Z being able to decipher 
their messages.

"X and Y must both know what the key is, and 
must insure that Z does not know what it is. In the 
traditional paradigm for cryptography, this situation 
comes about by the transmission of the key from X to Y 
over some special and secure communications channel, 
which we shall refer to as the key channel. Z cannot 
intercept messages sent on this channel, and the key is 
therefore safe.

"The reason that the key channel is not used 
for normal communications is because of its expense 
and inconvenience. Radio and telephone cannot be 
used, as both are vulnerable to passive 
eavesdropping. Registered mail might be acceptable 
for moderate security. Word of mouth is better, but 
listening devices might compromise it. Perhaps the 
only safe method is to send a trusted courier, with an 
attaché case chained to his wrist. This requires that 
you trust the courier. Whatever the method used, if Z 
should manage to discover the key by 'practical 
cryptanalysis,' then X and Y might very well continue 
in blissful ignorance of the fact."

A practical analogy of public key cryptography 
can be expressed in terms of a P. O. box. A public key 
is analogous to the P. O. box's address. Anyone can 
send a letter to the box; however, a private key (the 
key that unlocks the box) is required to read the 
letters. The analogy can be stretched to explain 
another important aspect of public key cryptography: 
signed messages. Assuming that any party that can 
send a letter has a unique signature, a letter's origin 
can be verified upon its reception based on its 
signature. A letter cannot be practically unsigned; 
signing a letter is a one-way function. The analogy is 
stretched, because in public key cryptography, signing 
is done with private keys. The creation and application 
of a unique, wax seal with the imprint of the P. O. 
box’s key may create a more accurate illustration.

V. HASHING

Hash algorithms (or hash functions) are 
another type of one-way functions, with applications in 
both distributed consensus and cryptography. 
Applying a hash algorithm is commonly referred to as 
"hashing". One of the first hash algorithms MD2 
(Message-Digest) is put forth by Kaliski in 1992 [19]. 
Hash algorithms produce a fixed-length digest (a 
"hash") of a given input. For example, the MD2 hash 
of the text "for example" is

5b14d4e48ab3f0a803daff2ff53d36ba.

It is not feasible to derive input text from its hash. 
Other notable hash algorithms include SHA-1 (Secure 
Hash Algorithm 1), published by the National Institute 
of Standards and Technology in 1993 [20], and SHA-
2, published in 2002 [21]. Correia et al. [22] puts 
forward an approach to Byzantine-tolerant distributed 
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consensus that utilizes hash algorithms as part of its 
methodology.

VI. BLOCKCHAINS

Correia [23] describes a blockchain as "an 
exciting new technology" which "is essentially a secure, 
unmodifiable, append-only, log of transactions." This log 
of transactions can be summarized as a ledger. Such a 
ledger is often used to maintain a record of monetary 
units possessed by a number of actors. These monetary 
units are often called "cryptocurrency" or "coins." One 
may note that while cryptocurrency and blockchains are 
related, the nature of the relationship is such that 
blockchain technology enables cryptocurrency. 
Constituent, distributed processes are often termed 
"nodes" in the context of blockchain systems.

A. Bedrock

Bedrock [24] is a distributed database 
consensus software, started in 2007; its initial 
deployment may be considered the start of the first 
blockchain. Like many other consensus protocols, 
Bedrock is designed to work over a wide-area network 
such as the Internet. Unlike many other blockchain 
protocols, Bedrock is not designed to reach consensus 
among hundreds or thousands of nodes. Its authors 
describe Bedrock as a "'private' blockchain" operating 
among a "small cluster of servers" [25]. These 
properties make Bedrock a fine ,explanatory blockchain.

"Under the hood", Bedrock maintains 
transactions within a table, separately on every node. 
The transactions have three properties. The first 
property is an ID—a simple, unique numeral assignment 
for each transaction. The second property is a query, 
which can be considered a modification instruction for 
the system's data. The table's third property is a SHA-1 
hash of both the current query and the previous query's 
hash. By hashing both the current query and the 
previous query’s hash together into a single, new hash 
that gets added to the table, each transaction's hash 
property is a product of both itself and its predecessor; 
the transactions are "chained" together.

When a node connects to the system, it 
broadcasts the ID and SHA-1 hash of the latest 
transaction in its table. If another node has this same 
transaction in their own table, these nodes are in 
consensus up to this transaction ("block") in the chain. 
Because transaction ID's are incremental, one node's 

latest transaction ID may be lower than another's. In 
this case, transactions can be synchronized and their 
queries committed to the local state of each node.

In some cases, different nodes may disagree 
on which transaction corresponds a given ID. These 
incongruous nodes may be described as "forked." In 
this state, the nodes will refuse each other's 
attempted communications. Multiple nodes can exist 
on each fork. A Paxos-based election protocol will 
ensure that only one of these forks will elect a new 
leader, based on which fork has a quorum. As with 
proposals in Paxos, all transactions are sent to the 
leader.

B. Proof of Work

All algorithms and protocols reviewed 
heretofore have no cost associated with proposing or 
committing transactions. In Paxos terms, there is no 
fee associated with adding to a ledger or passing 
legislation. This is the case with innumerable, 
additional protocols. In 1992, Dwork and Naor [26] put 
forth a possible technique to create a computational 
cost to modifying the state of a computer system. 
Their work is inspired by a glut of junk email, and this 
remains a theme throughout the paper; however, their 
technique can be extended as an "access control 
mechanism that can be used whenever it is desirable 
to restrain, but not prohibit, access to a resource."

Dwork and Naor propose a "pricing function" 
to control the cost of various digital activities, such as 
sending emails. In their model, the recipient of the 
email could easily discern whether or not the pricing 
function had been executed. Multiple possible 
functions are explored, and the authors enumerate 
three categories of these functions: easy, moderate, 
and hard. They conclude that a moderately difficult 
pricing function would be ideal, but at the time, there 
was "no theory of moderately hard functions."

C. Cryptocurrency

Transitioning from email to money, Wei Dai 
publishes b-money in 1998 [27]. He proposes that 
money can be created in a distributed system "by 
broadcasting the solution to a previously unsolved 
computational problem." His approach rewards the 
money creator based on the difficulty of the 
computational problem, depending on hypothetical 
market conditions.
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Satoshi Nakamoto (possibly a pseudonym [28]) 
creates the first practical cryptocurrency in 2008 with 
the publication of [29], and he calls this new currency 
“bitcoin”. This publication is widely regarded as the 
creation of the term "blockchain", wherein Nakamoto 
states plainly, "blocks are chained". The first bitcoin 
block, known as the "genesis block", is created in 2009.

Cryptocurrencies are fundamentally dependent 
on consensus; every node must agree on which actors 
control how many units of currency. In his novel 
blockchain protocol, Nakamoto addresses the issue of 
“moderately hard functions” by varying the difficulty of 
finding a correct hash for a block of transactions. The 
variability is dynamic. As more computational resources 
are allocated to the creation of new blocks—and new 
bitcoins, the difficulty increases. Where Bedrock uses 
an election to determine which forked nodes have a 
quorum, bitcoin takes another approach: the longest 
chain is assumed to be correct.

Since bitcoin is designed to be implemented on 
mutually suspicious nodes, additional differentiation 
from Bedrock is required. When a user submits a bitcoin 
transaction, a hash is calculated from both the hash of 
the previous transaction and the public key of the 
recipient. The user submitting the transaction signs this 
hash with a private key. Using this signature, the 
recipient is able to verify the transaction; however, this 
does not in and of itself stop the submitter from sending 
the same coins to multiple recipients. This problem is 
referred to as "double spending."

The double spending problem is addressed by 
putting a timestamp on each block, where a block is a 
collection of transactions. Bitcoin uses a distributed 
timestamp server. The timestamp server calculates the 
hash of a block, and then broadcasts that hash to other 
nodes. A block's hash also includes its predecessor's 
hash, thus the blocks are chained together. Because the 
timestamp server nodes are mutually suspicious, bitcoin 
employs a proof of work mechanism. Each block of 
transactions contains an incremental number called a 
"nonce". A network of actors competes to complete the 
proof of work required to find a hash for a new block 
that satisfies the conditions set by the dynamic difficulty. 
This competition is often referred to as "mining". Miners 
are rewarded for their computational effort with special 
transactions, the creation of new bitcoins.

An overview of the bitcoin network’s 
functionality, directly from [29]:

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on finding a difficult proof of work 
for its block.

4. When a node finds a proof-of-work, it broadcasts 
the block to all nodes.

5. Nodes accept the block only if all transactions in it 
are valid and not already spent.

6. Nodes express their acceptance of the block by 
working on creating the next block in the chain, using 
the hash of the accepted block as the previous hash.

One may note the assumption that every 
node in the network will participate in the proof of 
work competition. In light of the extraordinary amount 
of computing power dedicated to mining [30], many 
nodes elect not to participate at all. These non-mining 
nodes still keep a record of the blockchain, but they 
do not propose new blocks. Both mining and non-
mining nodes are free to join or leave the network at 
any time; they synchronize with the longest chain 
accordingly.

D. Proof of Stake

Proof of stake is a consensus protocol that 
builds upon the foundation laid by proof of work, 
likewise applicable to cryptocurrency. This novel 
protocol is formally introduced in 2012 by Sunny King 
and Scott Nadal [31]. (At some point, the name of 
their original proof of stake cryptocurrency "PPCoin" 
was superseded by "Peercoin".) The authors 
recognize the inherent resource consumption required 
by an effective proof of work system, and 
subsequently put forth a concept they call "coin age". 
To illustrate through example, "if Bob received 10 
coins from Alice and held it for 90 days, we say that 
Bob has accumulated 900 coin-days of coin age." To 
accurately calculate coin age, naturally each 
individual transaction requires a timestamp.

As with bitcoin, the acceptance of a new block 
by other nodes rewards its proposer with newly 
created coins. In order to earn the privilege of 
proposing a new block, a Peercoin holder sends coins 
to himself; in the process, he consumes some portion 
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of his own coin age. The new block must meet a hash 
requirement, as is the case is proof of work; however, 
this requirement is significantly easier to compute than 
the same in a proof of work system. This reduced hash 
difficulty contributes to proof of stake's diminished 
resource requirements. Even though the hash difficulty 
is relatively low, its computation can be regarded as 
moderately difficult, and it fluctuates to accommodate 
more or less mining effort, as with proof of work. 
Resolution of fork conditions differs from bitcoin's proof 
of work. Instead of assuming the longer chain is correct, 
Peercoin assumes that the correct fork is the one with 
the greater consumed coin age.

Proof of work and proof of stake are the two 
most prominent consensus protocols for blockchain 
systems, powering bitcoin and Ethereum respectively. 
(The Ethereum blockchain was switched from proof of 
work to proof of stake on September 15, 2022 with an 
update commonly called "The Merge"; the update 
reduces energy consumption by ~99.95% [32].) These 
protocols represent milestones in the long, intertwined 
roads of distributed consensus and cryptography.

VII. FIN.

A blockchain is a chain of blocks.
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